首页 > 古典文学 > 今日简史 > 第一部分 科技颠覆 第二章 就业:等你长大,可能没有工作

第一部分 科技颠覆 第二章 就业:等你长大,可能没有工作(1/2)

目录

我们完全无从得知2050年的就业市场会是什么样子。人们普遍认为,机器学习和机器人将改变几乎所有的工作,从制作酸奶到教授瑜伽都无法幸免。但谈到这项改变的本质及紧迫性,各家观点却众说纷纭。有人认为,只要10~20年,就会有几十亿人成为经济上多余的存在。但也有人认为,从长远看来,自动化的影响还是会为所有人创造新的就业机会,为社会带来更大的繁荣。

那么,我们究竟是真的处于危险动荡的边缘,还是这只是卢德分子歇斯底里的妄言?这很难说。早在19世纪,就有人担心自动化会造成大量失业,但至今这种情况从未出现。自工业革命拉开序幕以来,机器每抢走一项旧工作,也会至少创造一项新工作,而且人们的平均生活水平大幅提高。但我们有充分的理由相信这次情况不同,机器学习将会真正让整个情况彻底改变。

人类有两种能力:身体能力和认知能力。过去,机器主要是在原始的身体能力方面得以与人类竞争,而人类则在认知能力方面享有巨大优势。因此,随着农业和工业迈向自动化,就出现了新的服务业工作。这些新工作需要人类拥有独特的认知技能,包括学习、分析、沟通等,特别是必须理解人类的种种情绪。然而,人工智能已经在越来越多的认知技能上超越人类,包括理解人类的情绪。而且,除了身体能力和认知能力之外,我们并不知道还有什么第三种能力可以让人类永远胜过机器。

必须认识到的一个关键点是,人工智能革命不只是让计算机更聪明、运算得更快,还在生命科学和社会科学方面有诸多突破。我们越了解是哪些生化机制在支撑人类的情感、欲望和选择,计算机就越能分析人类行为、预测人类决策,并最终取代人类的司机、银行经理和律师等。

在过去几十年中,在神经科学和行为经济学等领域的研究,让科学家能够“破解”人类,更清楚地了解人类究竟是如何做出各种决定的。事实证明,我们从选择食物到选择伴侣,都不是出于什么神秘难解的自由意志,而是数十亿神经元在瞬间计算各种可能性的结果。过去大受赞誉的“人类直觉”,其实只是“辨识模式”罢了。优秀的司机、银行经理和律师,对路况、投资或谈判交涉并没有什么神奇的直觉,只不过是辨识出了某些一再出现的模式,于是能够躲过漫不经心的行人、拒绝无力偿债的借款人和识破图谋不轨的骗子。但同时也证明,大脑的生化算法距离完美还有很长一段路。大脑会走捷径,会根据不完整的信息快速找出答案,而且大脑的回路也显得过时,整套机制适合的是过去的非洲大草原,而不是现在的都市丛林。这也就难怪,即便是优秀的司机、银行经理和律师,也会犯下愚蠢的错误。

这意味着,就算是那些原本认为依靠直觉的工作,人工智能也能表现得比人类更好。人工智能不会比人类更有那种难以言喻的第六感,但如果说人工智能比人类更懂得计算概率和模式识别,听起来可信度就大了许多。

特别是,如果某些工作需要“关于别人”的直觉,人工智能的表现就会优于人类。许多工作(例如在满是行人的大街上开车、把钱借给陌生人、商务谈判等)都需要准确评估别人的情绪和愿望。那个孩子会不会突然跑到马路中间?这个穿着西装的人是不是打算从我这儿一借到钱就消失?那位律师的威胁是认真的,还是只想吓吓我?只要我们觉得这些情绪和欲望是来自某种非实体的心灵,计算机就永远无法取代人类的司机、银行经理和律师。原因在于:计算机怎么可能理解“心灵”这种神圣的创造物呢?然而,如果这些情绪和欲望实际上只不过是某些生化算法,计算机就没有理由无法破译这些算法,而且它们的成绩一定比任何智人都要好。

不管是司机预判行人想往哪儿走,银行经理评估借款人的信用好坏,还是律师衡量谈判桌上的气氛,依赖的都不是巫术,而是在他们毫无察觉的情况下,大脑就会通过分析面部表情、声调、手部动作甚至体味来识别生化模式。人工智能只要搭配适当的传感器,绝对可以把这些工作做得比人类更精确、更可靠。

因此,失业的威胁不只是因为信息技术的兴起,还因为信息技术与生物技术的融合。要从功能性磁共振成像(fri)扫描仪走到劳动力市场,这条路肯定是漫长而曲折的,但花个几十年总能走完。脑科学家今天对杏仁核和小脑的研究,就有可能让计算机在2050年比人类更适合担任精神病学家和保镖。

人工智能不仅能够侵入人类,在以往认为专属于人类的技能上打败人类,更拥有独特的非人类能力,使得人工智能和人类之间的差异不是程度高低的问题,而是完完全全的两回事。人工智能特别重要的两种非人类能力是“连接性”和“可更新性”。

人类都是个体,很难将所有人彼此连接,从而确保他们都能得到最新信息。相反,计算机并不是彼此相异的独立个体,因此很容易把计算机集成为一个单一、灵活的网络。所以这样说来,我们面临的不是几百万台计算机和机器人取代几百万个工人,而是所有作为个体的工人都会被一套集成的网络所取代。因此,讨论自动化的时候,不该把“一位司机”的能力拿来和“一台自动驾驶汽车”比较,也不该把“一位医生”和“一位人工智能医生”进行比较,而该拿“一群人”的能力和“一套集成网络”进行比较。

举例来说,交通规则时有调整,但许多司机并不熟悉,于是常常违规。此外,每辆车都是独立运作的实体,所以当两辆车到达同一个十字路口时,司机可能会误读彼此的意图,于是发生事故。相反,自动驾驶汽车是连接成一个整体的,所以两辆自动驾驶汽车来到十字路口时并非独立运作,而是属于同一套算法的一部分。这样一来,因沟通不畅而发生事故的机会也就大幅减少。此外,如果交通部门决定调整某些交通规则,所有的自动驾驶汽车都能轻松地在同一时间更新程序;除非程序出错,否则大家都会遵守新的规则。

同样,如果世界卫生组织确认出现某种新的疾病,或者某实验室研制出某种新药,目前几乎不可能让全世界所有人类医生都得知相关的最新消息。但相较之下,就算全球有100亿个人工智能医生,各自照顾一个人的健康状况,仍然可以在瞬间实现全部更新,而且所有人工智能医生都能互相分享对新病或新药的感受。连接性和可更新性可能带来的优势巨大,至少对某些工作来说,就算某些个人的工作效率仍然高于机器,但合理的做法将会是用计算机取代所有人类员工。

有人可能会反驳说,把个体人类转换为计算机运算网络之后,就会失去个性化所带来的优势。举例来说,如果某位人类医生做出了错误判断,并不会因此让世界上所有的患者都丧命,也不会阻碍所有新药的开发。相反,如果所有医生都属于某一系统,一旦该系统出错,结果可能就极其严重。但事实上,集成的计算机系统可以在不失去个性化优势的情况下,把连接性的优点发挥到极致。比如可以在同一个网络上运行多种算法,这样位于偏远丛林山村里的病人通过智能手机能找到的就不只是某位医学权威,而是上百位不同的人工智能医生,而且这些人工智能医生的表现还会不断被比较。你不喜欢那位ib(国际商业机器公司)医生的诊断吗?没关系。就算你现在被困在乞力马扎罗山上,也能通过搜索引擎轻松找到医生,寻求不同意见。

这很可能会给人类带来巨大的好处。人工智能医生能为几十亿人带来更好、更便宜的医疗保健服务,特别是那些目前根本没有医疗保健服务可用的人。凭借学习算法和生物传感器,就算是某个经济不发达国家的贫困村民,也可能通过智能手机获得良好的医疗保健服务,而且比目前最富有的人在最先进的城市医院所获得的服务水平有过之而无不及。

同样,自动驾驶汽车能让交通服务质量大幅提升,特别是能够降低车祸死亡率。如今,每年有将近125万人死于车祸(足足是战争、犯罪和恐怖袭击死亡人数的两倍)。而在这些事故中,超过90是人为造成的:有人酒驾,有人边开车边看手机,有人疲劳驾驶,有人开车的时候只顾着发呆。根据美国国家公路交通安全管理局2012年的统计,全美致死车祸中有31出于滥用酒精,30出于超速,21出于驾驶分心。而这些错误,自动驾驶汽车永远都不会犯。虽然自动驾驶汽车仍有其自身的问题和局限性,也免不了会有些事故,但根据预测,如果把所有驾驶工作完全交由计算机处理,将能够减少约90的道路伤亡。换句话说,只要全面改用自动驾驶汽车,每年就能少死亡100万人。

因此,如果只是为了保住工作就拒绝交通和医疗保健等领域的自动化,绝对是不明智之举。毕竟,我们真正该保护的是人类,而不是工作。如果自动化让司机和医生变得无用武之地,就让他们找点儿别的事来做吧。

机器里的莫扎特

至少在短期内,人工智能和机器人还不太可能完全取代整个产业。有些工作专精在小范围,日复一日做的都是程序化的动作,这种工作就会被自动化取代。然而,如果是每天都有变化、需要同时运用广泛技能组合的工作,或者需要应对难以预见的情况的工作,就不太容易用机器来取代人类。以医疗保健为例。很多医生的主要工作是处理信息:汇总并分析医疗数据,然后做出诊断。相比之下,护士需要有良好的运动和情绪技能,才能帮患者打针、换绷带,或者安抚激动的患者。因此,我们的智能手机上出现人工智能家庭医生的时间,很有可能会远远早于我们拥有可靠的护理型机器人。人文关怀产业(也就是照顾老幼病残)大概在很长一段时间内仍然会是人类的工作。事实上,随着人类寿命延长和少子化,养老产业很可能成为人类劳动力市场成长最快的行业类别。

除了养老产业,创意产业也是自动化特别难以突破的领域。现在,我们可以直接从itunes(苹果数字媒体播放应用程序)下载音乐,而不需要由真人店员来销售,但作曲家、音乐家、歌手和音乐节目主持人都还是活生生的人。我们需要这些人的创意,除了是要制作全新的音乐,也是为了在多到让人头昏脑涨的诸多选项当中进行选择。

尽管如此,最终所有工作都有可能走向自动化,对此就连艺术家也得小心。现代社会一般认为,艺术与人类的情绪紧紧相连,艺术家引导着人类的心理力量,艺术的目的是让我们和自身的情绪有所联系,或者激发出新的感受。因此,当我们品评艺术的时候,通常就是看它对观众的情绪起了多大的作用。但如果真以这个标准来定义艺术,当外部的算法比莎士比亚、弗里达·卡罗(frida kahlo,墨西哥女画家)或碧昂丝更能了解和操纵人类的情绪时,又会发生什么事?

毕竟,情绪也不是什么神秘的现象,只是生化程序反应的结果。因此在不久之后,只要用机器学习算法,就能分析身体内外各种传感器所传来的生物统计资料,判断人的性格类型和情绪变化,或是计算某首歌(甚至是某个音高)对情绪的影响。

在所有艺术形式中,最容易受到大数据分析冲击的可能就是音乐。音乐的输入和输出都适合用精确的数学来描述,输入时是声波的数学模式,输出时则是神经风暴的电化学反应模式。在几十年内,算法只要经过几百万次的音乐体验,就可能学会如何预测某种输入如何产生某种输出。

假设你刚和男友大吵一架,负责音响系统的算法就会立刻发现你内心的情绪波动,并根据它对你个人以及对整体人类心理的了解,自动播放适合你的歌曲,与你的忧郁共鸣,附和你的悲伤。它放的这些歌可能不适合其他人,但完全符合你的性格类型。算法先把你带到悲伤的底层,然后放出全世界最可能让你振作起来的那首歌,原因可能是这首歌在你的潜意识里与某个快乐的童年记忆紧密相连,而你可能根本毫无察觉。任何一位人类音乐节目主持人,都不可能与这样的人工智能相匹敌。

你可能会提出异议,认为这样一来,人工智能不就扼杀了所有的偶然,把我们束缚在一个狭隘的音乐“茧”里,一丝一缕都是由我们自己的好恶织成的?你是想探索新的音乐品位和风格吗?没问题。你可以轻松地调整算法,让它完全随机地挑选5的内容,为你播放印度尼西亚的甘美兰(gan)合奏、罗西尼的歌剧,或者最新的韩国流行音乐。慢慢地,通过监测你的反应,人工智能甚至能判断出对你来说理想的随机性程度,可能是上调至8,也可能是下调到3,让你既能探索新音乐,又不会觉得厌烦。

另一种可能的异议,则是认为算法不见得知道该让情绪把我们带到哪里。刚和男友大吵一架之后,算法究竟是该让你高兴还是难过?它对于“好”情绪和“坏”情绪的判断,会不会过于武断?或许有时候,它觉得伤心也不见得是件坏事?当然,这些问题就算是人类音乐家和音乐节目主持人也会遇到。但放到算法领域,这个难题就会有许多有趣的解决方案。

方案一,让使用者自己选择。你可以自己评估情绪,再让算法依你的指示行事。不管你是想沉湎于自怜中还是兴奋地跳起来,算法都会像个奴隶般乖乖听你的话。算法也确实有可能学会在你自己还毫无察觉的情况下,就判断出你到底想要什么。

方案二,如果你不信任自己,则可以先挑选出你信任的著名心理学家,再让算法听那位心理学家的建议就可以了。比如,如果男友甩了你,算法或许能够协助你走过理论上“悲伤的五个阶段”:先用博比·麦克费林(bobby cferr)的歌曲《不要忧虑,要快乐》(don&039;t worry, be happy)帮你否认发生的事;再用艾拉妮丝·莫莉塞特(anis hta know)让你发泄愤怒;接着用雅克·布雷尔(jace brel)的《不要离开我》(ne )的《回来,留下来》(e back and stay)鼓励你讨价还价;用阿黛尔·阿德金斯(adele adks)的《如你》(aynor)的《我会活下去》(i will survive)让你接受一切。

接下来,算法开始调整这些歌曲和旋律,为你量身打造。或许某首歌什么都好,只有一个地方让你不喜欢。算法知道这件事,是因为只要一到那个地方,你的心跳就会停一下,催产素水平也会稍微降低。而算法能做的,就是把那个讨厌的地方重写或干脆删去。

最后,算法就能学会编写整首曲子,人类的情绪就像钢琴琴键般任它们弹奏。有了你的生物统计数据之后,算法甚至可以量身打造出全宇宙只有你会喜欢的旋律。

常有人说,人类之所以喜欢艺术,是因为可以在艺术中看见自己。但如果脸谱网开始运用它对你所知的一切来打造个性化的艺术品,结果可能会出人意料,甚至造成危险。比如,如果男友甩了你,脸谱网呈现给你的可能是一首完全为你量身打造的歌曲,内容就是关于这个负心人的,而不是那个让阿黛尔或艾拉妮丝·莫莉塞特伤心的不知名人士。这首歌甚至能提醒你在过去交往时那些只有你们俩知道的事情。

当然,为个人量身打造的艺术可能成不了流行,因为人还是喜欢大家都爱的玩意儿。如果这个曲调只有你知道,不就没办法和大家一起唱唱跳跳了?然而,比起制作个性化作品,算法可能更擅长制作全球热销作品。运用储存了数百万人数据的生物统计数据库,算法知道只要按下哪些生化按钮,就能在全球掀起热潮,让所有人在舞池里疯狂摇摆。如果艺术的重点真的在于启发(或操纵)人类的情绪,那么人类音乐家大概难以再与这样的算法匹敌,因为算法实在比人类更了解它们所拨弄的这个乐器:人类的生化系统。

这一切会带来伟大的艺术吗?这可能要看艺术是如何定义的。如果说听众觉得美就是美,而且顾客永远是对的,那么生物统计算法就有可能创造出历史上最佳的艺术。但如果艺术是一种比人类情绪更深层的东西,应该表达出超越生化震动的事实,那么生物统计算法大概就不会成为优秀的艺术家。然而,大多数人大概也成不了优秀的艺术家。只是为了进入艺术市场,取代许多人类作曲家和表演者,算法并不需要直接打败柴可夫斯基,先打败小甜甜布兰妮就行了。

新工作?

从艺术到医疗保健行业,许多传统工作将会消失,但其造成的部分影响可以由新创造出的工作抵消。例如,诊断各种已知疾病、执行各种常规治疗的全科医生,有可能被人工智能医生取代,这会省下很多经费,让医生和实验室助理得以进行开创性的研究,研发新药或手术方案。人工智能也可能以另一种方式协助人类创造新的工作:人类与其想赢过人工智能,不如把重点放在人工智能的维护和运用上。举例来说,因为无人机取代了飞行员,有些工作确实消失了,但同时在维护、远程控制、数据分析和网络安全等方面也创造出了许多新的工作机会。美国军方每派出一架“捕食者”(predator)无人机或“死神”(reaper)无人机飞越叙利亚,就需要有30人在幕后操作;至于收集完数据的后续分析则至少还需要80人。2015年,美国空军就曾经因为缺少足够的训练有素的人而面临无人操作无人机的窘境。

这样说来,2050年的就业市场的特点很可能在于人类与人工智能的合作,而非竞争。从警务到银行等各个领域,“人类+人工智能”的表现都能超越单纯的人类或单纯的计算机。在ibarry kasparov)之后,人类并没有停止下棋。相反,在人工智能的协助下,人类的国际象棋大师水平比过去更高。至少有一段时间,被称为“半人马”(centaur)的“人类+人工智能”组合,在国际象棋比赛中的表现比单纯的人类或计算机都要出色。很有可能,人工智能也能如法炮制,协助培养出历史上最优秀的侦探、银行经理和军人。

然而,这些新工作很可能需要高水平的专业知识,因此无法解决无技能失业者的就业问题。让失业者接受再培训之后去做这些工作,可能还不如直接创造完全属于人类的全新工作。在过去的自动化浪潮中,劳动者通常可以从某个低技能的工作轻松转到另一个低技能的工作。比如,1920年,因为农业机械化而失业的农场工人可以在生产拖拉机的工厂里找到新工作;1980年,工厂工人失业后,可以去超市当收银员。这种职业转变在过去是可行的,因为从农场到工厂、从工厂到超市,都只需要稍加培训即可。

但是到了2050年,收银员或纺织工人的工作全部由机器人接手之后,他们几乎不可能变身为癌症研究人员、无人机驾驶员或“人类+人工智能”的银行团队中的一员。他们缺少必备的技能。在第一次世界大战中,派出几百万名毫无作战经验的士兵扛着枪一阵乱射,牺牲成千上万人,其实是有意义的做法,毕竟当时个人的技术好坏并不会造成太大差异。但是今天,就算无人机驾驶员和资料分析师的岗位确实缺人,美国空军也不会找个失业的超市收银员来填补空缺。你不希望有个没经验的“菜鸟”把阿富汗的婚礼派对误认为是塔利班的高层集会吧?

因此,虽然出现了许多新的人类工作,我们仍然可能看到新的“无用阶层”日益庞大。我们甚至可能两面不讨好:一方面许多人找不到工作,另一方面也有许多雇主找不到有技能的雇员。这有点儿像19世纪汽车取代马车时的情景,当时有许多马车夫转行当出租车司机,只是我们可能不是那些马车夫,而是被淘汰的马。

此外,由于机器学习和机器人技术还会持续进步,所以其实任何人类工作都有可能受到自动化的威胁。就算某位40岁失业的沃尔玛收银员靠着惊人的努力让自己改头换面成了无人机驾驶员,也很有可能在10年之后因为无人机也自动化了而必须再改头换面一次。职场波动如此剧烈,使得组织工会或保障劳工权益变得更加困难。我们现在就能够看到,即使是在发达经济体中,很多新工作的形态也是无保障的临时工、自由职业和一次性合作。如果某个专业在10年间就迅速起落,又怎么可能组织起工会呢?

同样,“半人马”组合很有可能变成一场人类与计算机之间不断的拔河角力,而不是稳定的终身伙伴关系。完全由人类组成的团队(比如福尔摩斯和华生),常常会形成长期的阶层和惯例,并能够延续数十年。然而,如果侦探和ib的超级计算机系统“沃森”合作[该人工智能系统2011年在电视益智抢答节目《危险边缘》(jeopardy!)中获胜],会发现所有的阶层都可能被打破,所有的惯例也都可能被干扰。昨天的搭档,明天可能就成了你的主管;所有的规章和守则也都必须每年重写。

本章未完,点击下一页继续阅读。

书页 目录
返回顶部